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Abstract

In the history of artificial neural networks, LSTMs have proved to be a high-performance architecture at sequential 
data learning. Although LSTMs are remarkable in learning sequential data but are limited in their ability to learn long-
term dependencies and representation of certain data structures because of the lack of external memory. In this paper, 
we tackled two main tasks, one is language translation and other is image captioning. We approached the problem of 
language translation by leveraging the capabilities of the recently developed DNC architectures. Here we modified 
the DNC architecture by including dual neural controllers instead of one and an external memory module. Inside our 
controller, we employed a neural network with memory-augmentation which differs from the original differentiable 
neural computer, we implemented a dual controller’s system in which one controller is for encoding the query 
sequence whereas another controller is for decoding the translated sequences. During the encoding cycle, new inputs 
are read and the memory is updated accordingly. In the decoding cycle, the memory is protected from any writing 
from the decoding controller. Thus, the decoder phase generates a translated sequence at a time step. Therefore, the 
proposed dual controller neural network with memory-augmentation is then trained and tested on the Europarl dataset. 
For the image captioning task, our architecture is inspired by an end-to-end image captioning model where CNN’s 
output is passed to RNN as input only once and the RNN generates words depending on the input. We trained our 
DNC captioning model on 2015 MSCOCO dataset. In the end, we compared and shows the superiority of our 
architecture as compared to conventionally used LSTM and NTM architectures.
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1. Main text  

With new emerging neural architectures, with time deep learning is pushing AI to the next level. LSTMs [5] has 
been the go-to neural architecture when it comes to sequential learning. But recent studies suggest a few more 
sophisticated architectures, mainly MANNs (Memory Augmented Neural Networks). Our work employs two latest 
MANN architectures NTM (Neural Turing Machines) [6] and DNC (Differentiable neural computer) [7]. In out work 
both of these architectures are tested on two tasks, Language Translation, and Image Captioning. 

1.1. Language Translation 

Machine Translation is an exacting task in which we use large statistical models. These large statistical models are 
developed using highly subtle language-producing knowledge. Machine Translation examine the use of software to 
translate from one language to other and is a sub-part of Computational Linguistics. 

Neural Machine Translation is a type of Machine Translation in which we use Deep Neural Network for the 
translation of one language to another. In our approach, we use embeddings for capturing words and other vector 
representation like continuous space representations for internal states. Unlike phrase-based statistical models, our 
model predicts one word at a time using only a single sequence model called Sequence Modelling. The word sequence 
modeling is done using a recurrent neural network (RNN). However, RNN has two limitations that are the fixed-
length problem and Gradient Vanishing/Exploding. To handle these failing basic RNN cell is replaced by Gated 
Recurrent Unit (GRU) or Long Short-Term Memory (LSTM) cell and then hyperbolic tangent activation is exchanged 
by Rectified Linear Units (ReLU), the encoder-decoder model is adopted. An encoder (a bidirectional RNN), is used 
by the neural network to encode a source sentence for a decoder (a second RNN), that is used to predict words in the 
intent language. The one hidden state was not enough. To further improvise the result in general Attention Mechanism 
is used. Attention Mechanism stopples a context vector into a gap between decoder and encoder. Attention is a vector 
and with the help of SoftMax function it frequently the outputs of a dense layer. The input of the context vector is the 
output of all cells that are used to compute the probability distribution of source language words for each single word 
decoder wants to generate. It enables the translator to pay particular attention to local or global features. 

The Differentiable Neural Computer (DNC) [7] is a neural network architecture with a memory augmentation and 
the attention mechanism both at the same time. It has two components a controller and a memory. It is an extension 
of Neural Turing Machine (NTM) [6], with additional features of memory attention to control where memory is stored 
and temporal attention to store order of events. It is better than some of its predecessors such as the LSTM because it 
performs tasks that have longer-term dependencies. As the name suggests, DNC is differentiable end-to-end that 
makes it possible to optimize them in a well-organized and competent way using gradient descent. The DNC model 
is a Turing complete because of the re-sizability of the memory.  

1.2. Automatic Description Generation 

Our second task, Image captioning, also known as automatic description generation is a challenging computer 
vision task as well as a language translation (NLP) problem. It’s a sub-problem of a larger task in computer vision i.e. 
scene understanding. Recent advances in deep learning have pushed Computer Vision to a new climax by enabling 
high accuracies in task [8] such as Object Detection, Action Detection, Life Logging, etc. Tasks such as Image 
captioning demonstrate the potential of deep learning architectures. 

To tackle this problem, initially algorithmic approach [9] was taken using similarity measures between images and 
words. But, in time deep learning entirely changed the process by introducing robust data-driven models which were 
able to learn the correlation between the spatial representation of images and the sequential patterns in sentences. 

Now Automated Image captioning is done using sequence-to-sequence models [2], [10]. The Recurrent neural 
network learns the semantics of the language used in describing the images, while convolutional neural networks give 
them the ability to produce words/sentences that are relevant to the image by providing features or by directly passing 
embeddings. Jointly they act together to form a larger architecture to describe an image, which intuitionally appears 
obvious. Individual advances in these modules (LSTMS etc.) has improved the capabilities of the final architectures 
greatly. 
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Generally, the images are pre-processed and then passed through a CNN. After which the architecture can be either 
end-to-end [2] or the features could be extracted from CNN and then passed to a different RNN based architecture as 
described here [10]. Different variations in architecture lead to variations in results. The RNN part is provided with 
the word-embeddings, which can either be learned or directly generated from models like word2vec [11] which can 
provide word embeddings. After training the model on a decently large dataset, Captions are generated word by word 
and each word from the result is appended to the input for next word (naive approach). Generally, the performance of 
these models is significantly inaccurate, thus heuristic searching techniques such as beam search are often used.  

2. Related Works 

Image Captioning and Neural Machine Translation Models: Image Captioning is the process of an automatically 
spawning textual content of an image which is totally based on the objects and actions in the image. In Neural Machine 
Translation, the encoder (a bidirectional RNN), is used by the neural network to encode a source sentence for a decoder 
(a second RNN), that is used to predict words in the intent language. But in new approach, [2] the encoder RNN is 
replaced by CNN (deep convolution neural network). Basically, CNN's embedded the input image to a definite-length 
vector. Therefore, for image classification, CNN is used as an image “encoder” and then the output of the last hidden 
layer as an input to the “decoder” (RNN) that spawn sentences. This model is named as Neural Image Caption (NIC). 
First, this end-to-end system, the neural net is trained using Stochastic Gradient Descent. Second, this model merges 
sub-networks for language as well as vision models. Finally, NIC beats current state-of-art on many datasets like 
Pascal dataset, Flickr30K, SBU. On Pascal dataset, BLEU score of NIC was 59 as compared to the state-of-art was 
25 and on Flickr30k it improved the earlier result from 56 to 66. 

Generally, LSTM is used for sequence modelling but it has some limitations. The new approach was introduced to 
overcome LSTM's limitations.[3] This approach took the inspiration from the DNC (Differentiable neural computer) 
and added an extension to the LSTM architecture. The implementation of a DNC is a non-trivial task and also DNCs 
are difficult to train, instability throughout the learning process, take a long time to converge and prone to over-fitting. 
The copying task is performed on the bAbI dataset using DNC and DNC performance was better than or equal to 
LSTM standard [4]. The new version of LSTM called as “MC-LSTM”, where ‘MC’ stands for ‘memory control’. Just 
like conventional input, forget and output gate they added a new gate which is responsible for reading and writing 
from the memory matrix (Analogous to the access module of DNC which is responsible for reading and writing from 
memory) [3]. In original DNC paper [5], the controller can be any neural network but, in this work, the LSTM cell 
can be thought of as a controller itself and memory are handled by the control gate. Unlike the normal DNC (in case 
of a recurrent controller), the controller’s hidden state isn’t passed to the next state of the network but a different 
control vector is sent. They tested the new architecture on an internal Fan Filter Unit dataset and “MC-LSTM” has 
given better results than the LSTM. 

There has been new approach introduced for sequence-to-sequence prediction modelling using a differentiable 
neural computer to predict a sequence of treatment plans for the future by observing previous digital medical record 
of a patient [1]. The prediction model is built on the theory that an effective recommended treatment plan shows a 
clear long-term dependency from the previous record of health information. This problem is approached with two key 
moderation that is treatment recommendations for a particular subject as a sequence-to-sequence problem for 
prediction and writes protected policy is applied to the decoding controller. The first controller is for encoding the 
history and second controller is for decoding the treatment sequences for treatment recommendation. While encoding, 
the external memory goes through a updation cycle as soon as the new input is read and during the decoding phase, 
unlike encoding the memory is write-protected. This dual controller writes protected memory-augmented neural net 
(DCwMANN) model was trained on MIMIC- III dataset and it performs better than existing methods of treatment 
recommendation. 
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3. Architecture 

3.1. Overview 

A Differentiable Neural Computer [7] is an end-to-end differentiable neural network system which is coupled to 
an external matrix for memory. The DNC behavior is independent of the size of the memory unless the memory is 
saturated or filled to its complete capacity, which is the reason why the memory is termed external memory. The DNC 
system's network is referred to as the controller, whereas the memory of the DNC can be thought of like the RAM 
(Random Access Memory), thus making a differentiable CPU which learns its operations using gradient descent. The 
neural memory frameworks [12] [13] recently suggested are different from the differentiable neural computer 
architecture because it allows iterative memory content modification by selectively writing and reading to the memory. 
The neural Turing machines which are the earlier form of DNC have a similar structure with a different memory 
addressing mechanism and practically un-expandable thus, a limited memory space. 

A differentiable neural computer uses a differentiable attention mechanism to determine the distribution of the rows 
(locations) in a memory matrix, unlike the conventional non-differentiable computers which use a simple unique 
address to access the contents of the memory. The weightings distribution shows involvement[AK1] degree of a particular 
location in a Write and read operation. The memory M is read over by a read vector (Re) using a read weighting We

Re. 
The read vector can be represented by the following equation: 

 𝑅𝑅𝑒𝑒𝑊𝑊𝑒𝑒 = ∑𝑁𝑁
𝑖𝑖=1 𝑀𝑀𝑒𝑒[𝑖𝑖, . ]𝑊𝑊𝑒𝑒

𝑅𝑅𝑒𝑒[𝑖𝑖] (1) 
where the’.’ denotes all j= 1..., 
In the same way, the write operation first erases the memory with an erase vector e and rewrites it by adding a write 

vector v using a write weighting. 
 𝑀𝑀𝑒𝑒[𝑖𝑖, 𝑗𝑗] ← 𝑀𝑀𝑒𝑒[𝑖𝑖, 𝑗𝑗](1 −𝑊𝑊𝑒𝑒

𝑊𝑊𝑒𝑒[𝑖𝑖]𝑒𝑒[𝑗𝑗]) +𝑊𝑊𝑒𝑒
𝑊𝑊𝑒𝑒[𝑖𝑖][𝑗𝑗] (2) 

The weightings are applied and determined by two types of functional units called write and read heads. We have 
illustrated the operations of the read and write heads in Fig.4. 

3.2. Head and Memory Interaction 

In DNC, three different types of differentiable attentions are used by the heads. First, differentiable attention is a 
content lookup in which the controller emits a key vector which is compared to the memory content at that particular 
location using a cosine similarity measure. This addressing technique is common in both DNC and NTM, it’s inspired 
from content-addressing technique used in Hopfield Networks [14]. The scores generated from the similarity measure 
are used to determine whether a weighting can be used by the write heads for modifying the existing memory vector 
or by the read heads for associative recall. It is important to note that a key that matches the memory content partially 
can be utilized to attend certain operation for that particular location. This property acts as a form of pattern 
completion, as the content of one address effectively encodes the other address's references, thus a rich mechanism is 
provided by key-value retrieval for navigation of various data structures associated in external memory. 

The second differentiable attention applied in DNC is used to record transitions between consecutively written 
memory locations in temporal link matrix L of NxN dimensionality. L[m,n] approaches 1 if m was the next written 
location after n, else it falls close to 0. The operation termed as Lw is used to smoothly shift the focus forward towards 
the memory locations written after the ones emphasized in w, whereas LtW is used to shift the focus backward. This 
attention mechanism gives a differentiable neural computer the native ability to remember back a sequence in the 
same sequential order in which it was originally encoded, even when the encoding phase doesn’t perform consecutive 
writes in adjacent time steps. 

The third differentiable attention used in DNC enables the allocation of memory to perform the write operation. 
The memory usage for each location is represented by a decimal falling between the range 0 and 1, and an unused 
location picked out by a weighting is delivered to the write heads which automatically increases with each write to 
that particular location and after each read it gets decreased. This enables the DNC controller to perform reallocation 
of memory that is freed and is not required any more by the subsystem. This allocation mechanism is independent of 
the memory content and size which enables a differentiable neural computer to tackle a task by utilizing only one size 
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of external memory and upgrade it to a relatively bigger slot later without undergoing retraining. This makes it possible 
for a DNC to use a external memory without any bounds by increasing the locations every time a certain minimum 
threshold usage is passed for any location.   

The discussed differentiable attention mechanism's designs are mainly motivated by computational consideration. 
The content lookup mechanism enables the data structures to be associative, whereas the retrieval of input sequences 
is enabled by temporal links. The third mechanism allocates the unused locations to the write heads. However, a 
parallelism is observed between the mammalian hippocampus and the differentiable neural computers on memory 
mechanics. The memory modification of a differentiable neural computer is one shot and fast like the associative long-
term potentiation in the mammalian hippocampal CA1 and CA3 [15]. The DNC takes inspiration from the dentate 
gyrus, the region of the mammalian hippocampal known for supporting neurogenesis [16]. It helps to increase the 
representational sparsity in the external memory, thereby enhancing the usage-based memory allocation, memory 
capacity [17], and weighting sparsity. The increased probability of item sequence recall is also demonstrated by the 
human free recall experiment, which shows that it has the same order of item recall as the phenomenon dependent on 
the hippocampus reported by the temporal context model [18], thus showing clear similarity to the formation of 
temporal links. 

3.3. Neural Turing Machines 

Another architecture used is NTM (Neural Turing Machine). DNC being NTM’s successor is also a MANN 
architecture. Besides DNC’s attention mechanisms and infinite memory, everything between these architectures is 
common. Neural Turing Machine as its name suggests, takes inspiration from the Turing Machine. Here controller, 
analogous to the Turing machine, can be thought as the finite state table. Just like the Turing machine, the memory in 
the NTM is infinite. But, in practice and implementation the memory used is fixed at the when we define the 
computation graph, unlike the DNC which can extend its memory. 

Reading: 
The read head produces normalized read weights (1 x N), which are then used for reading the content from the 

memory. Each row is multiplied with its corresponding weights and then resulting rows are added element-wise to 
yield the read vector (1 x M). The memory matrix consists of N rows M column each. 

 ∑𝑡𝑡 (𝑖𝑖) = 1,0 ≤ 𝑤𝑤𝑡𝑡(𝑖𝑖) ≤ 1, ∀𝑖𝑖𝑟𝑟𝑡𝑡 ← ∑ 𝑤𝑤𝑡𝑡(𝑖𝑖)𝑀𝑀𝑡𝑡(𝑖𝑖) (3) 
Writing: 
NTM’s writing operation is inspired from LSTM’s input and forget gates. As write head yields the write weights 

wt (1 x N) and the erase vector et with M values between 0 and 1. Each row of new memory matrix is acquired by 
following erase and write operations. 

 �̅�𝑀𝑡𝑡 ← 𝑀𝑀𝑡𝑡−1(𝑖𝑖)[1 − 𝑤𝑤𝑡𝑡(𝑖𝑖)𝑒𝑒𝑡𝑡] (4) 
First, element-wise multiplication of the previous rows and the multiplication of erase vector and elements of the 

write weights wt subtracted from a row-vector, containing only 1s is acquired (Mt). 
Along with erase vector write head yields write vector at which with write weights are used to perform add 

operation to the memory matrix. Just as in the given eq (5): 
 𝑀𝑀𝑡𝑡 ← �̅�𝑀𝑡𝑡 + 𝑤𝑤𝑡𝑡(𝑖𝑖)𝑎𝑎𝑡𝑡 (5) 

Addressing Mechanism: 
The addressing in NTM is different from the DNC. Along with the content-based addressing mechanism which is 

common with DNC, location-based addressing is also used in NTM. Location based addressing consist of three steps 
Interpolation, Convolutional shift, Sharpening. Interpolation decides how much of the new weights to add and how 
much of old weights to write. The Convolution shift is used for determine if and how much to rotate the weighting. 
Finally, sharpening is applied to get the final weights. 
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Fig. 1. Flow Diagram of the Addressing Mechanism. 

4. Proposed Model for Image Captioning 

We present Neural Network Architectures for image captioning while making use of two recent MANN's i.e. NTM 
and DNC. What sets these architectures apart are their memory and new abilities, while beating the LSTMS in tasks 
such as copy, repeat copy and question-answering (bAbi dataset) [7] [4] which requires a long-term memory, they’re 
also able to do the conventional tasks that conventional RNNs like LSTMs can do. 

 

Fig. 2. The CNN model passes the embeddings to the RNN. The access module is responsible for reads and writes from the memory matrix M. 
The Linear module is feedforward, it takes the output of both controller and access module and applies activation giving the final output at any 

timestamp. We represent the embedding weights. West represents embeddings of the t-th word in the example sentence. 

The architecture presented is inspired from a recent work [2], which presented an end-to-end image captioning 
model where CNN’s output is passed to RNN as input only once and the RNN generates words depending on the 
input. The input image is given to the CNN which yields image embeddings. These embeddings are then passed to 
RNN, which encodes the image embeddings and passes them to the next state of RNN. From this state, sentence input 
is fed. The captions in the dataset are pre-processed which helps to create a dictionary of unique words, these words 
are one hot encoded, then the embeddings of these words are passed to the RNN. Their study empirically shows that 
passing the image only once, yields better result as LSTM isn’t able to over-fit on the images and their noise this way. 

The above Fig.2 depicts the proposed architectures. The CNN doesn’t interact with the Memory, but the RNN is 
assigned as a controller. The controller is LSTM based but could be any type of RNN, in theory, it could even be 
feedforward, but RNNs are more suitable for sequential tasks. The access module is a generic representation of 
memory interaction for any type of MANN i.e. in case of DNC it can be replaced by DNC’s read/write operations and 
memory and the same goes for NTM. This module yields the output from the memory, it is responsible for the 
reading/writing the contents from/in the memory. This provides a certain level of abstraction from the memory 
interactions, which differ greatly in the two MANNs (DNC and NTM). Everything other than the memory interaction 
is the same in both DNC and NTM thus both architectures are represented above in the same figure. 

At every timestamp, the output of the access module from the previous step is passed to the controller, and the 
output of the controller is passed to the access module. Both controller and access modules pass their respective states 
to the next timestamp. At first image, embeddings are acquired from CNN. For the very first timestamp of DNC/NTM, 
the access module’s output which is required in controllers’ input is initialized with zeros. Which then is appended to 
the output of the CNN. The controller now processes the input, returning its state (controller is assumed to be an RNN) 
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and produces the first output. Starting the next timestamp sentence as word embeddings is fed to the RNN. At time t 
the probability of the t-th word is produced by the taking SoftMax of MANN’s output. Using categorical cross-entropy 
the loss is back propagated in the entire network. It can be minimized with any variant of gradient descent. 

4.1. Inference 

Descriptions can be generated using various methods, the easiest one is the Naive approach. In a naive approach, 
one word is generated at a time by choosing the word with maximum probability from the output. It is called naïve as 
no heuristic function is used. Newly acquired words are appended to form an incomplete sentence, these incomplete 
sentences are passed repeatedly unless the model returns an End-of-Sentence token at that point we’ve got the 
complete sentence and no more steps are to be taken. Another famous and preferred method is Beam Search. It is a 
heuristic search technique where the heuristic function is the probabilities acquired from the model. It explores not 
one, but k possibilities. It helps us tackle description generation as a graph problem, where the destination is the 
sentence with maximum probability. We have to find the path with maximum probability from a set of k paths.  

 

Fig. 3. Learning curves. Median error on 10 training runs (each) for a DNC, NTM and LSTM. 

5. Proposed Model for Language Translation 

In this section, we demonstrate one of our major contribution to solving the task of language translation by using a 
deep neural architecture. The architecture is called DCw-MANN [1] or Dual Controller Write-protected Neural 
Network with Memory Augmentation. Our suggested architecture introduces two contributions which are simple yet 
vital to the original differentiable neural computers. The first contribution stated in our following study is the use of 
dual controllers to do the processes of decoding and encoding the sequence to sequence data. The second contribution 
is the application of a write-protection policy while the memory augmented neural network is in the decoding phase. 
The encoding phase starts with the input sequence being fed to the embedding layer WE, whose output is fed to the 
encoder which is the first controller (ULSTMe). The first controller reads and writes to the memory at each time step. 
This information is later used during the decoding phase by the second controller. In the decoding phase, the decoder 
( second controller) receives the states of the first controller and decodes the incoming encoded vector to its respective 
embedding. 
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( second controller) receives the states of the first controller and decodes the incoming encoded vector to its respective 
embedding. 
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Fig. 4. Dual Controller Memory Augmented Neural Network with write protection. ULSTMe represents the encoding controller instrumented as 
a LSTM. ULSTMd represents the decoding controller. 

The use of dual controllers has a marginal advantage over the use of one controller as it is harder for one controller 
to learn more than one strategies in the same time frame. Thus the dual controller use makes the learning easy and 
more focused as compared to a single controller. It is also important to note that the decoder in our architecture can 
utilize of the previously predicted values from the last embedding layer (WD) as an input combined with the values 
picked up from the external memory. Next important feature of memory augmented dual controller architecture is its 
ability to enable the write-protection mechanism during the decoding phase. This feature gives the network a marginal 
advantage during the decoding step over the writing strategy employed in the vanilla differentiable neural computer, 
as no fresh input is given to the neural system. Also, some code dependencies are left in the output sequences. These 
dependencies which are contained among the sequences at the output end are not too long, so the cell memory can 
properly capture them Ct within the second controller ( decoder LSTM ULSTMd). Therefore, the second controller 
employed in the DNC architecture is inherently prohibited from writing any information to the external memory. In 
specific words, at a particular time step TS(t ) + 1 we have the hidden cell memory as well as the hidden state of both 
the controllers as: 

𝐻𝐻𝑡𝑡+1, 𝐶𝐶𝑡𝑡+1 = {𝑈𝑈𝑒𝑒
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿([𝑊𝑊𝐸𝐸𝑣𝑣𝑑𝑑, 𝑟𝑟𝑡𝑡], ℎ𝑡𝑡, 𝑐𝑐𝑡𝑡); 𝑡𝑡 ≤ 𝐿𝐿𝑖𝑖𝑖𝑖

𝑈𝑈𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿([𝑊𝑊𝐷𝐷𝑣𝑣𝑑𝑑, 𝑟𝑟𝑡𝑡], ℎ𝑡𝑡, 𝑐𝑐𝑡𝑡); 𝑡𝑡 > 𝐿𝐿𝑖𝑖𝑖𝑖
} (6) 

 
where vdt is the input sequence code’s one-hot encoded vector at a particular time step 𝑡𝑡 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿 and vpt is 

the one-hot encoded output vector from the decoder at particular time step t > Lin, defined as vpt = onehot(ot), i.e.,: 
 

 𝑣𝑣𝑝𝑝𝑡𝑡 = {
1; 𝐿𝐿 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑜𝑜𝑡𝑡[𝑗𝑗])
0; 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝐿𝐿𝑒𝑒𝑒𝑒 } (7) 

 
We suggested to enable the write-protected mechanism as new memory update rule: 
 

 𝑀𝑀𝑡𝑡
𝑒𝑒 = {𝑀𝑀𝑡𝑡−1

𝑒𝑒 ⋅ (𝐸𝐸 − 𝑒𝑒𝑡𝑡
𝑊𝑊𝑒𝑒𝑡𝑡𝑤𝑤) + 𝑒𝑒𝑡𝑡

𝑊𝑊𝑣𝑣𝑡𝑡𝐿𝐿; 𝑡𝑡 ≤ 𝐿𝐿𝑖𝑖𝑖𝑖
𝑀𝑀𝑡𝑡−1

𝑒𝑒 ; 𝑡𝑡 > 𝐿𝐿𝑖𝑖𝑖𝑖
} (8) 

 
where E is a ones matrix of N X D dimensionality, 𝑒𝑒𝑡𝑡𝑒𝑒 ∈ [0,1]𝑁𝑁 represents the write-weight, 𝑒𝑒𝑡𝑡 ∈ [0,1]𝐷𝐷 

represents an erase vector, 𝑣𝑣𝑡𝑡 ∈ 𝑅𝑅𝐷𝐷 represents a write vector, ’.’ shows a point-wise multiplication operation, and Lin 
is the input sequence length.  
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5.1. Sequence to Sequence translation experiment 

In the first experiment, we investigated the language translation capacity of the dual controller differentiable neural 
computer. We compared our DNC’s performance with other neural architectures using the Europarl Machine 
Translation Dataset [19]. The Europarl is a standard statistical machine translation dataset used for neural machine 
translation. The dataset comprises of the proceedings that were recorded in the European Parliament. These 
proceedings are translated into eleven languages from the transcriptions of speakers at the European Parliament. The 
dataset is mainly a collection of the proceedings of the dating back to 1996. The transcription corpus comprises of 
about thirty million words for each of the eleven official languages recognized by the European Union. The European 
Parliament website provides this data corpus in a downloadable format. The Europarl dataset was created by Philipp 
Koehn, who is known for his book on the topic of statistical machine translation. The dataset has been open sourced 
for researchers on the Europen Parliament website by the name of European Parliament Proceedings Parallel Corpus 
1996-2011. This dataset is often used as a part of machine translation challenges. The latest version of the dataset is 
version 7, which was released in 2012 and comprised of data from 1996 to 2011.  

In our experimentation, we found that when a single differentiable neural computer is trained on ten thousand 
instances of the Europarl data, a mean error of 3.2 % was achieved during testing, compared to the benchmark of 7.5 
% mean error [1]. We also recorded that our dual controller DNC performed much better than both LSTM’s [5] and 
NTM’s [6]. LSTM is long short-term memory cell which is the benchmark neural network architecture applied to the 
many sequence to sequence processing tasks, whereas NTM is short for a Neural Turing Machine. Unlike the 
previously recorded benchmarks on the mentioned dataset, the given input to our model was single token encoding 
certain words without any prior preprocessing or any other sentence-level feature extraction. 

 

Fig. 5. Training Loss for Neural Machine Translation Task. 

6. Conclusion 

In the work demonstrated in this paper, we attempted to solve two tasks of image captioning and neural machine 
translation respectively. For tackling the image captioning task our architecture is inspired by an end-to-end image 
captioning model where CNN’s output is passed to RNN as input only once and the RNN generates words depending 
on the input. The DNC implementation of our architecture is compared with NTM and LSTM’s performance on the 
same task and the respective mean errors are graphed and shown in the image captioning section. For the second task 
of neural machine translation we used a dual controller memory augmented neural network with write-protected 
memory during the decoding cycle. To calculate and compare the neural network’s performance on sequence recall, 
we used NLD - Normalised Levenshtein distance. The normalized edit distance is used to measure the model’s 
performance. The Levenshtein distance is in between the generated and target sequence and is normalized over the 
length of the longer sequence. The smaller the NLD value denotes a good predicted sequence. The measured values 
form different models are summarized in Table 1. 
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In our network design, the order dependencies are preserved between each admission, which allows the use of this 
sequential information using memory-based methods for showing a better performance. Our work differs from other 
approaches because we attempted to implement memory augmented network to image captioning and neural machine 
translation. Our results have shown that our modification of using a dual controller architecture for sequence to 
sequence processing are really effective for solving such real-world problems. The network architecture 
implementation can be generalized to all long-term dependency tasks that process sequences to make predictions. 

     Table 1. Normalized Levenshtein Distance to Target Sequences. 

Model NLD 

DNC  0.255 

DNCw  0.250 

DNC-MANN  0.159 

DNCw-MANN  0.085 

Seq2Seq  0.712 

Seq2Seq (Attention)  0.634 

About BLEU: BLEU [28] score is used as the evaluation metric, despite having some drawbacks BLEU is in itself 
a standard metric and is commonly used in machine translation tasks. It gives n-gram precision between two sentences. 
Due to limited resources and demanding architectures, it is out of scope to go through large set of hyperparameters 
and long training durations. Thus, we stopped the training after achieving satisfactory results. 

Table 2. Evaluation matric for image captioning task. 

 Metric   LSTM   NTM   DNC 

BELU 1  0.675   0.719   0.729  

BELU 2  0.506   0.538   0.557  

BELU 3  0.391   0.397   0.409  

BELU 4  0.247   0.291   0.312  
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